COMBINED HEAT AND POWER (CHP)
Smart Power Generation
- District Heating Solutions

Edward Nagelhout, WÄRTSILÄ POWER PLANTS
May 2012
Agenda

• District Heating
• Opportunities and Challenges
• CHP Technologies in DH Applications
• Economic Comparison
• Other Benefits
Agenda

- District Heating
- Opportunities and Challenges
- CHP Technologies in DH Applications
- Economic Comparison
- Other Benefits
District Heating

Heat

Next to electricity, modern society requires much heat for:
- industrial processes
- space heating
- hot water

Heat can be generated by:
- Solar (Radiation (glass) or solar boilers)
- Heat pumps
- Fuel-based boilers
- CHP (combined heat and power)
 - This is especially the case if the electricity generators are installed at the site where the heat is needed.
 - Examples: Hospitals, chemical industries, refineries, large greenhouse facilities and district heating

Source: IEA, *CHP, Evaluation the benefits of greater global investment, 2008*
District Heating

Cogeneration

Combined Heat and Power (CHP), also known as cogeneration, generates electricity while using residual (excess) heat for residential heating, hot water or steam.

- CHP currently accounts for 9-11%* of global power generation.
- CHP plants can use various fuels ranging from natural coal, gas, to even bio-mass.

Source: Cogen Europe.
Cogeneration

CHP Plant technologies

- Gas turbines (OCGT) with heat recovery steam generators (HRSG)
- Combined-cycle gas turbines (CCGT) consisting of a gas turbine with HRSG, which drives a steam turbine with a back pressure or a steam extraction system
- Internal combustion engines with electrical generators and heat extraction systems

Source: IEA ETSAP Technology Brief E04, May 2010
Source: Cogen Europe
© Wärtsilä 09 May 2012 Presentation name / Author
District Heating (DH)

DH systems

Heat Networks are a global happening
- North America (USA, Canada)
- North and Eastern Europe
- Russia
- Northern China and Japan
- South Korea

Built in Cities and Urban Areas
- Dense accumulation of buildings
- One common system covers one city
- System designs are country specific
- Most systems are based on
 - 110-170 °C Hot water
 - 90-100 °C Warm water
- Traditionally heated by centralised coal or oil fired thermal plants, which have been replaced by gas fired CHP

Source: IEA, CHP, Evaluation the benefits of greater global investment, 2008
District Heating (DH)

DH systems

Most CHP based DH systems are operated according to heat demand
- Electricity production is seen as a by-product to be sold to grid
- Typically only operated during cold seasons
- Summer heat load is lower than minimum requirements (So boilers take over)
- Summer E-prices are lower than winter prices (Less income)

Politically desirable
- Energy efficient (85-90%)
- Environmentally friendly (CO₂ reduction)

Feasibility is at question
- Large investments

Opportunities
- Product combination (DC, Heatpumps, RE)
- Maximise Earnings by increasing flexibility

Source: IEA, CHP, Evaluation the benefits of greater global investment, 2008
© Wärtsilä 09 May 2012 Presentation name / Author
District Heating

DH systems

To make CHP more flexible
- DH systems need to make electricity and heat generation partially independent by
 - Heat storage (thermal/electrical)
 - Backup generation

DH load
- DH load is generally scattered over a wide area with many smaller load points
 - Optimisation is challenging
 - CHP plant is economically viable at 40-50% of the annual peak load

Source: Heating data from a Central European City with a population of ~300,000
- District Heating
- Opportunities and Challenges
- CHP Technologies in DH Applications
- Economic Comparison
- Other Benefits
Opportunities and Challenges

Efficient use of primary fuels

Following EU Energy Strategy

• CHP and DH systems have an important role in increasing efficient use of fuels
• Replacement of coal, oil and gas-fired boilers plants with CHP

New investment in CHP and DH systems have requirements

• Need accurate and reliable forecasts of heat loads and prices
• Potential income from electricity
• Stable regulatory frameworks, due to long lifespan (20-40 years)

Heat load

• Typically heat loads are low in summer, while during other seasons loads vary heavily. Winter has very short term heat demand peaks with a higher base load
• Also notable annual heat load variations which makes optimisation challenging
• Improvement in insulation, such as housing, leads also to annual decrease in heat demand.
 • Estimations range from 1-3% per year
 • Growth of connections and increase in consumer comfort will alleviate this partially
Opportunities and Challenges

Feasibility

Electricity
• Competitive markets
 – Leads to more price volatility
• Dispatch according to market price signals
• Higher shares of renewable plant (Wind and Solar)
 – Increase in electricity price variations, due to intermittency

CHP
• Heat load and electricity prices do not always correlate (match)
• Making CHP heat and electricity production (partially) independent will increase its profitability
• Some markets promote merit order of CHP plant, improving feasibility
• CHP bonus is also known, bonus electricity tariffs, based on annual total efficiency
Opportunities and Challenges

Spot Market Denmark
Opportunities and Challenges

Improved flexibility with DH storage

A heat storage system enables
• Efficient use CHP
• CHP flexibility

Utilisation of an accumulator
• High E-prices, CHP runs full load
 – Charges accumulator
• Low E-prices, storage discharges
 – CHP doesn’t need to run
 – E-boiler practical when in markets with high share of intermittent plant

• Fast dispatching CHP
 – Possible balancing services
 – Tertiary income (ancillary markets, ETS)

Source: www.emd.dk/desire/skagen
Agenda

- District Heating
- Opportunities and Challenges
- CHP Technologies in DH Applications
- Economic Comparison
- Other Benefits
CHP Technologies in DH Applications

In mid segment (50-300MW) choices

CCGT

• High electrical efficiency (48-58\%)\(^1\)
• Consists of a gas turbine with HRSG
 – driving a steam turbine with a back pressure
 – or a steam extraction system
• High gas pressure, High temperatures
• High quality materials and operators needed
• Gas turbine start 25 mins, CCGT 45 mins
• Minimum load 50\% E, 60\% Heat
• Once per year full maintenance with 50-100\% capacity loss

CCGT Configuration for DH

• Possible 1-1-1 or 2-2-1 setup
• The larger, the better the price per KW\(_e\)
 – Higher efficiency with larger turbines

Source: GTPro, Thermoflow software
In mid segment (50-300MW) choices

Reciprocating combustion engines
- Electrical efficiency (44-48%)\(^1\)
- Multiple generation sets in parallel
 - HRSG and Engine cooling system
 - Jacket water, lube oil, charge air
- Gas pressure 5 bar, temperatures 400°C
- Modular design, enabling short start up times
- Start 5 mins
- Maintenance can be run with minimal loss of capacity 5 engines 20%, 10 engines 10%
- Wide load range 5%-100% for both E and heat

Configuration for DH
- Easy to optimise due to multiple engines

Also biomass fired plants

Source: Wärtsilä
CHP Technologies in DH Applications

Comparisons

Efficiencies

• Gas turbines
 – E-efficiency decreases at part load
 – Heat efficiency increases at part load

• Combustion engines
 – High part load E-efficiency
 – Constant power-to-heat ratio at any load

• Minimum electrical load in the graphs is assumed at 50% for both technologies

Power-to-heat ratios

• As seen the CCGT can operate between a heat load range
 – 60-100% in 1-1-1 and
 – 30-100% in 2-2-1 configuration
 – 2-2-1 running in 1-1-1 can increase its power-to-heat ratio to 100% at 50% load

• Combustion engines can run at 5-100% heat load (10 units)
Comparisons

Load ranges and efficiencies on plant level

- **Plant total efficiency**
 - Combined cycle plant, 1-1-1 -total
 - Combined cycle plant, 2-2-1 -total
 - Combustion engine plant, 10 engines -total

- **Plant electrical efficiency**
 - Combined cycle plant, 1-1-1 -electrical
 - Combined cycle plant, 2-2-1 -electrical
 - Combustion engine plant, 10 engines -electrical

- **Plant load ranges**
 - Combined cycle plant, 1-1-1 -load range
 - Combined cycle plant, 2-2-1 -load range
 - Combustion engine plant, 10 engines -load range
CHP Technologies in DH Applications

Dynamic features

Note: Start up times from warm stand-by!
Agenda

- District Heating
- Opportunities and Challenges
- CHP Technologies in DH Applications
- Economic Comparison
- Other Benefits
Economic Comparison

Input data for model

Model data

• Electricity market
 – E produced sold to German National Grid (EEX)
 – E-prices 2009\(^1\), CHP get bonus of €15/MWh\(_{el}\)\(^2\)

• Gas market
 – €25/MWh\(^3\) (€6.9/GJ) fuel cost
 – Corresponding heat price at 91% efficiency is €27.5/MWh\(_{th}\)

• Economic variables
 – Lifespan is 20 years, with 6% WACC
 – Hourly evaluation for 1 operational year
 – 400 MW\(_{th}\) DH network, optimal 40% load setup

• Compared solutions [3]
 – 1-1-1 CCGT, 220 MW\(_{el}\), 50% efficiency
 – 2-2-1 CCGT, 2x100 MW\(_{el}\), 48% eff.
 – Combustion engine plant, 10x18MW\(_{el}\), 46% eff.
 – All: 88% efficiency total, 165 MW\(_{th}\) full load

E-Market price variation

E-Market price duration
Economic Comparison

Performance Values

Data

• Sources: Wärtsilä and GTPro, thermoflow software
 – Project and development costs are assumed at 25-30% of total investment
 – These also contain the investment for storage/accumulators
 – O&M are estimates based on data from multiple sites, calculating costs related to start/stop use

Performance values of the compared solutions

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Combined cycle plant, 1-1-1</th>
<th>Combined cycle plant, 2-2-1</th>
<th>Combustion engine plant 10 engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant size</td>
<td>MW<sub>el</sub> / MW<sub>th</sub></td>
<td>220 / 167</td>
<td>200 / 167</td>
</tr>
<tr>
<td>Plant net efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>%</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>Heat</td>
<td>%</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>%</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>Plant load range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>%</td>
<td>50-100</td>
<td>25-100</td>
</tr>
<tr>
<td>Heat</td>
<td>%</td>
<td>68-100</td>
<td>34-100</td>
</tr>
<tr>
<td>Prices and costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power plant (EPC)</td>
<td>EUR/kW<sub>el</sub> net</td>
<td>900</td>
<td>1000</td>
</tr>
<tr>
<td>Project development / administration</td>
<td>EUR/kW<sub>el</sub> net</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Total investment</td>
<td>EUR/kW<sub>el</sub> net</td>
<td>1200</td>
<td>1300</td>
</tr>
<tr>
<td>O&M costs including consumables</td>
<td>EUR/MWh<sub>el</sub></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Economic Comparison

Optimal plant operating modes

Model output

- CCGT shut down during summer months, due to narrow load range + long start-up times
 - 1-1-1 configuration produces more E, because of size and higher efficiency
 - 2-2-1 configuration gets more operation hours due to its boarder range
 - Combustion engines produce more heat and electricity because it can operate during summer
 - Combustion engines reach higher annual running hours due to its wide load range (multiple units)

Performance values of the compared solutions

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Combined cycle plant, 1-1-1</th>
<th>Combined cycle plant, 2-2-1</th>
<th>Combustion engine plant 10 engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant size</td>
<td>(MW_e / MW_{th})</td>
<td>(MW_e / MW_{th})</td>
<td>(MW_e / MW_{th})</td>
</tr>
<tr>
<td>Electricity production balance</td>
<td>GWh_{el}</td>
<td>869</td>
<td>840</td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>GWh_{fuel}</td>
<td>1 746</td>
<td>1 777</td>
</tr>
<tr>
<td>Annual running hours</td>
<td>h</td>
<td>4 192</td>
<td>4 698</td>
</tr>
<tr>
<td>Heat production balance</td>
<td>GWh_{th}</td>
<td>666</td>
<td>716</td>
</tr>
<tr>
<td>Power plant</td>
<td>GWh_{th}</td>
<td>375</td>
<td>328</td>
</tr>
<tr>
<td>Heat boiler</td>
<td>GWh_{th}</td>
<td>375</td>
<td>328</td>
</tr>
<tr>
<td>Total</td>
<td>GWh_{th}</td>
<td>1 044</td>
<td>1 044</td>
</tr>
<tr>
<td>Annual efficiencies</td>
<td>%</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>Electricity</td>
<td>%</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>Heat</td>
<td>%</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>Total</td>
<td>%</td>
<td>88</td>
<td>88</td>
</tr>
</tbody>
</table>

Source: Wärtsilä, moduled via Plexos
Economic Comparison

Annual variation and duration curves for the compared solutions

Source: Wärtsilä, modulated via Plexos
Economic Comparison

Economic Results

CCGT <-> Combustion engines

• Feasibility Model
 – Annual operating profits of all 3 solutions are similar
 – Lower E-efficiency of combustion engine is compensated by its flexibility in summer
 – The relative low CAPEX costs gives the combustion plant healthier cash flow
 – This in return shortens the pay-back time, IRR and NPV is higher

Economic values of the compared solutions

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Combined cycle plant, 1-1-1</th>
<th>Combined cycle plant, 2-2-1</th>
<th>Combustion engine plant 10 engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant size</td>
<td>MWel / MWth</td>
<td>220 / 167</td>
<td>200 / 167</td>
</tr>
<tr>
<td>Revenues and cost division</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenues from sales of electricity</td>
<td>MEUR / year</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>CHP bonus</td>
<td>MEUR / year</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Total revenues</td>
<td>MEUR / year</td>
<td>52</td>
<td>49</td>
</tr>
<tr>
<td>Operating costs</td>
<td>MEUR / year</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>Operating profit</td>
<td>MEUR / year</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>Capital Costs</td>
<td>MEUR / year</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Net cash flow</td>
<td>MEUR / year</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Feasibility of the investment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pay-Back Time</td>
<td>years</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Internal Rate Of Return</td>
<td>%</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Net present value</td>
<td>MEUR</td>
<td>0</td>
<td>-16</td>
</tr>
<tr>
<td>Total Investment</td>
<td>MEUR</td>
<td>264</td>
<td>260</td>
</tr>
</tbody>
</table>

Source: Wärtsilä, modulated via Plexos
Economic Comparison

Economic Results

CCGT <-> Combustion engines

• Feasibility Model
 – Combustion engine has higher production costs, due to its higher running hours
 – On the other side it has a lower annual generation cost
 – High electrical output
 – Lower capital cost

Economic values of the compared solutions

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Combined cycle plant, 1-1-1</th>
<th>Combined cycle plant, 2-2-1</th>
<th>Combustion engine plant 10 engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant size</td>
<td>MW<sub>el</sub>/MW<sub>in</sub></td>
<td>220 / 167</td>
<td>200 / 167</td>
</tr>
<tr>
<td>Production costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td>MEUR</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Variable O&M</td>
<td>MEUR</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>- Fuel savings from heat recovery</td>
<td>MEUR</td>
<td>-18</td>
<td>-20</td>
</tr>
<tr>
<td>Total</td>
<td>MEUR</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>Generating costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity production costs</td>
<td>EUR/MWh<sub>el</sub></td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Capital costs</td>
<td>EUR/MWh<sub>el</sub></td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>EUR/MWh<sub>el</sub></td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>- CHP bonus</td>
<td>EUR/MWh<sub>el</sub></td>
<td>-15</td>
<td>-15</td>
</tr>
<tr>
<td>Net generating costs</td>
<td>EUR/MWh<sub>el</sub></td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Source: Wärtsilä, modeled via Plexos
The study showed, future CHP and DH systems should:

- Fulfil environmental norms
- Utilise heat storage
- Have high efficiency
- Have a high power-to-heat ratio
- Have good dynamic capabilities
 - fast start to full production, fast stop and good ramping possibilities
- Have a wide plant heat load range
The key findings from the comparison are:

- A wide heat load range enables flexible operation during variable heat demands
- Heat storage improves the system’s flexibility with optimal electricity and heat production
- A efficient plant with high power-to heat ratio enables more electricity production
- Multiple units with fast starts/stops enable dynamic operation in low heat demand seasons
- Good dynamic capabilities (multiple units) enable opportunities in ancillary services markets due to increasing shares of intermittent renewable generation. Is also therefore more profitable
Agenda

- District Heating
- Opportunities and Challenges
- CHP Technologies in DH Applications
- Economic Comparison
- Other Benefits
Other Benefits

Additional earning potential

CHP can earn extra income on dynamic markets

• Electricity market
 – Sell capacity (reserve) in summer mostly
 – Sell ancillary services, balancing and frequency balancing

• Decentralised plant locations
 – Multi unit combustion engine plants offer the same efficiencies and cost level regardless of the number of units
 – Improves reliability and efficiency of energy supply
 – Reduces electrical and heat transmission losses
 – Saves pumping energy in the DH system
 – May be connected directly to medium voltage systems, reducing connection fees to high voltage national grid

• Permit allowance (easier to get building permits)
Optimise CHP

- Combustion plant efficiency is dependant on DH system
 - The lower the return temperature, the higher the total efficiency possible

- Plant efficiency is dependant on ambient temperatures
 - When running in the summer combustion plants don’t suffer efficiency losses as much as GT’s
THANK YOU FOR YOUR ATTENTION!

Edward.Nagelhout@wartsila.com

Smart Power Generation
www.smartpowergeneration.com